

The Cocommunity

Monthly Newsletter of the International Coconut Community

Vol. LIV No. 6

ISSN 0215-1502

June 2024

International Coconut Community

@coconutcommunity

INTEGRATED COCONUT PROCESSING MACHINERY AND SOLUTIONS

T & I Global Ltd

50+
YEARS

500+
EMPLOYEES ACROSS T&I GLOBAL

40+
COUNTRIES SERVED

400,000+
SQ.FT.
INTEGRATED MANUFACTURING AREA

100+
PROJECTS EXECUTED

500+
TRUSTED CUSTOMERS

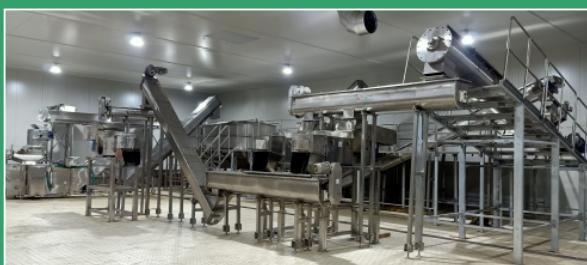
THE TIGL EXPERIENCE

Continuous
Process and
Machinery
R&D

New Plant
Engineering,
Design & Supply

Existing Factory
Up-gradation
& Expansion

Plant
Automation


AMC, Spares &
Training
Installation &
Commission

Electrical,
Steam, Utility
Engineering

Machinery
Customization

Turnkey
Solutions

Machinery
Manufacturing
& Supply

COMPLETE TURNKEY COCONUT PROCESSING & ENGINEERING SOLUTIONS

DESICCATED COCONUT | VIRGIN COCONUT OIL | COCONUT MILK | COCONUT WATER | CRUDE COCONUT OIL
COCONUT CHIPS & FLAKES | COIR & FIBER

THINK COCONUT. THINK T&I GLOBAL

Contact Us

www.coconutmachineryindia.com | marketing@tiglobal.com | +91 9874045634 / +91 9345915893

TABLE OF CONTENTS

The Executive Director Speaks	
<i>"Non-Standard Coconut as a Viable Source for Biofuel?"</i>	2
Prevailing Market Prices of Selected Coconut Products and Oils	3-4
Market Review of Desiccated Coconut	5-6
Community News	7-20
Trade News	20-23
Other Vegeoil News	23-24
Health News	24-26
Coconut Recipe	26
Statistics	27-28

TABLE LIST

Table 1. Indonesia's Monthly Exports of Desiccated Coconut, 2022 – 2024	27
Table 2. Philippines' Monthly Exports of Desiccated Coconut (in MT), 2021 – 2024	27
Table 3. Sri Lanka's Monthly Exports of Desiccated Coconut (MT), 2022 – 2024	28
Table 4. Export Volume of Desiccated Coconut by Country of Origin, 2024 (MT)	28

THE EXECUTIVE DIRECTOR SPEAKS

"Non-Standard Coconut as a Viable Source for Biofuel?"

Coconut oil has emerged as a promising source of biofuel, including sustainable aviation fuel (SAF). As the world grapples with the urgent challenges of climate change and the depletion of non-renewable fuel sources, exploring alternative, sustainable energy options has become a priority. Utilizing non-standard coconuts—those that do not meet the criteria for food or cosmetic-grade oil—presents a unique opportunity to expand the role of coconut in the biofuel sector. By substituting conventional fossil fuels with biofuels derived from coconut oil, we can address critical global issues, such as reducing greenhouse gas emissions and promoting the use of sustainable energy.

SAF production can act as a buffer mechanism during periods of excess coconut supply, particularly when the surplus, if not utilized promptly, may decline in quality for food use. This approach allows for the conversion of coconuts, which might otherwise deteriorate due to extended storage, into biofuel. This prevents market saturation and the subsequent drop in coconut prices, protecting farmers' interests. The integration of coconut-derived biofuels can enhance the global perception of coconut as a versatile and sustainable resource. This shift could positively influence market dynamics, potentially driving up the demand and price for coconuts in general.

A potential challenge is the inclination among farmers to produce more non-standard coconuts if the price for biofuel feedstock becomes comparable to high-quality nuts. This shift could impact the overall quality and availability of coconuts for traditional uses. As coconut products are highly valued in the health and wellness sectors, there could be competition between using coconut as a food source versus its use in biofuel. Balancing these demands will be crucial to avoid disrupting existing markets.

Increased focus on non-standard coconuts might reduce the efforts to improve the overall quality of coconut crops. It's important to maintain a balance, ensuring that quality standards do not decline as farmers might be less motivated to meet higher benchmarks.

Establishment of robust supply chains and quality control measures will be essential to support this new use intensively.

Utilizing non-standard coconuts for biofuel presents a significant opportunity to contribute to sustainable energy solutions while supporting coconut farmers economically. However, it is crucial to address the associated challenges, ensuring that the shift towards biofuel does not negatively impact the quality and traditional uses of coconut products. With the right strategies and policies in place, coconut-derived biofuels could become a key player in the global renewable energy landscape. Enhance coconut production practices, diversify products, and expand market reach could stabilize supply and pricing, particularly during volatile periods. The integration of coconut oil as a biofuel presents a promising pathway, but one that must be navigated with care and foresight.

DR. JELFINA C. ALOUW
Executive Director

PREVAILING MARKET PRICES OF SELECTED COCONUT PRODUCTS AND OILS

In May 2024, the prices of coconut-related products displayed varied trends across major producing nations, including the Philippines, Indonesia, India, and Sri Lanka. Coconut Oil (CNO) prices decreased in the Philippines and Indonesia, while they increased in India and Sri Lanka. Meanwhile, the price of Desiccated Coconut (DC) rose in the Philippines and Sri Lanka but remained stable in Indonesia.

COPRA: In May 2024, the prices of Copra in Indonesia exhibited a marginal decrease, reaching US\$715 per metric ton, compared to US\$721 per metric ton in the preceding month. Noteworthy was the significant rise of US\$116 per metric ton from the same period in the previous year. Concurrently, the Copra market in the Philippines experienced a modest decreased, descend from US\$682 per metric ton in April 2024 to US\$647 per metric ton in May 2024. Despite this decrease, it maintained a US\$21 per metric ton lead over the corresponding period of the previous year, which reported prices at US\$626 per metric ton.

COCONUT OIL: In May 2024, coconut oil prices showed a coordinated downward trend in Indonesia, the Philippines, and Sri Lanka. In Europe (C.I.F. Rotterdam), the average price fell to \$1,396 per metric ton, down from \$1,420 per metric ton in April 2024. However, this price was still 35% higher than the \$1,031 per metric ton recorded in May 2023. In the Philippines, the local market price settled at \$1,248 per metric ton, reflecting a \$48 decrease from the previous month but a \$128 increase compared to the previous year. Meanwhile, Indonesia saw a slight decline in local prices to \$1,309 per metric ton in May 2024, down from \$1,313 per metric ton in April 2024, though still \$210 per metric ton higher than in May 2023.

COPRA MEAL: A closer examination of Copra Meal prices reveals a nuanced trend. In the

Philippines, the average domestic price of Copra Meal was \$154 per metric ton in May 2024, indicating a decline from the previous month and a significant decrease of \$123 per metric ton compared to the same period last year. In contrast, Indonesia experienced an increase in the average domestic Copra Meal price, which rose to \$245 per metric ton in May 2024. Despite this rise, the price was still \$40 per metric ton lower than in the previous year.

DESICCATED COCONUT: In May 2024, the average price of DC (Desiccated Coconut) FOB (Free on Board) USA saw an uptick at US\$1,911 per metric ton, marking an increased from the last month. Sri Lanka experienced an increase in the domestic price of Desiccated Coconut to US\$1,999 per metric ton, while the Philippines maintained a steady DC price in the domestic market at US\$2,039 per metric ton. Indonesia's FOB price for DC stabled to US\$2,050 per metric ton, surpassing both the figures from the previous year, which were US\$1,475 per metric ton.

COCONUT SHELL CHARCOAL: In May 2024, the average price of Coconut Shell Charcoal in the Philippines was at US\$367 per metric ton, marking a slight increase of US\$2 per metric ton compared to the previous month. In Indonesia the average price stabled at US\$449 per metric ton during the same period, while Sri Lanka witnessed a marginal decrease to US\$379 per metric ton.

COIR FIBRE: In Sri Lanka, the domestic trade of Coir Fiber in May 2024 showed mixed fiber averaging at US\$65 per metric ton, with bristle ranging between US\$408 and US\$628 per metric ton. Meanwhile, Indonesia maintained the price of mixed raw fiber at US\$110 per metric ton in May 2024, indicating a slight increase from the previous year's figure of US\$90 per metric ton.

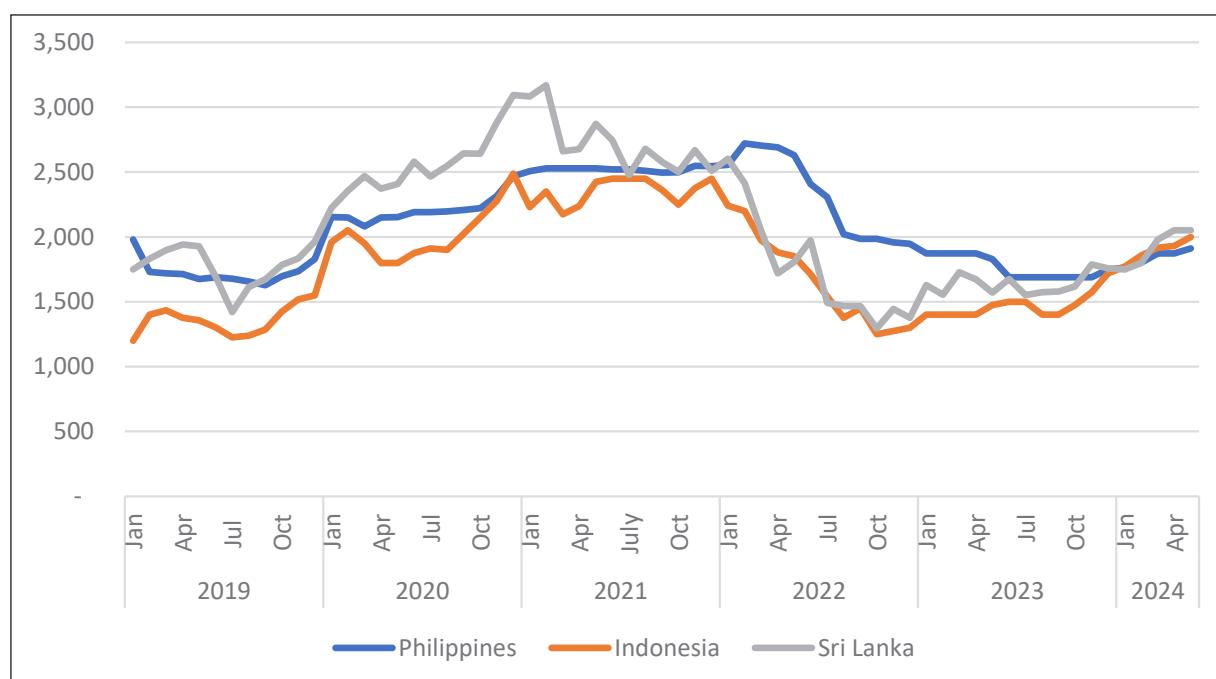
Price of Coconut Products and Selected Oils (US\$/MT)

Products/Country	2024	2024	2023	2024
	May	Apr	May (Annual Ave.)	
Dehusked Coconut				
Philippines (Domestic)	154	156	133	143
Indonesia (Domestic, Industry Use)	192	196	144	198
Sri Lanka (Domestic, Industry Use)	213	214	213	217
India (Domestic Kerala)	486	486	411	473
Copra				
Philippines (Dom. Manila)	647	682	626	649
Indonesia (Dom. Java)	715	721	599	692
Sri Lanka (Dom. Colombo)	1,139	1,141	1,225	1,101
India (Dom. Kochi)	1,234	1,225	1,046	1,172
Coconut Oil				
Philippines/Indonesia (CIF Rott.)	1,396	1,420	1,031	1,274
Philippines (Domestic)	1,248	1,296	1,120	1,205
Indonesia (Domestic)	1,309	1,313	1,099	1,220
Sri Lanka (Domestic)	1,993	1,987	2,243	1,949
India (Domestic, Kerala)	1,931	1,900	1,678	1,842
Desiccated Coconut				
Philippines FOB (US), Seller	1,911	1,874	1,828	1,845
Philippines (Domestic)	2,039	2,039	2,039	2,039
Sri Lanka (Domestic)	1,999	1,931	1,571	1,895
Indonesia (FOB)	2,050	2,050	1,475	1,926
India (Domestic)	1,746	1,754	1,439	1,767
Copra Meal Exp. Pel.				
Philippines (Domestic)	154	191	277	214
Sri Lanka (Domestic)	296	310	329	301
Indonesia (Domestic)	245	243	285	252
Coconut Shell Charcoal				
Philippines (Domestic), Buyer	367	365	345	363
Sri Lanka (Domestic)	379	391	423	366
Indonesia (Domestic Java), Buyer	449	449	473	456
India (Domestic)	444	420	340	377
Coir Fibre				
Sri Lanka (Mattress/Short Fibre)	65	67	49	64
Sri Lanka (Bristle 1 tie)	408	489	410	439
Sri Lanka (Bristle 2 tie)	628	670	522	640
Indonesia (Mixed Raw Fibre)	110	110	90	110
Other Oil				
Palm Kernel Oil Mal/Indo (CIF Rott.)	1,196	1,290	993	1,135
Palm Oil Crude, Mal/Indo (CIF Rott.)	859	936	934	888
Soybean Oil (Europe FOB Ex Mill)	988	959	988	959

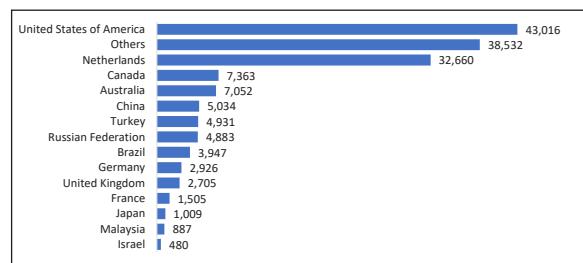
Exchange Rate

May 31, '24 1 US\$ = P58.54 or Rp16,247 or India Rs83.46 or SL Rs300.74
 1 Euro = US\$1.08 n.q. = no quote

MARKET REVIEW OF DESICCATED COCONUT


During the first five months of 2024, the desiccated coconut market experienced a significant surge in prices across major producing countries, including the Philippines, Indonesia, and Sri Lanka. Desiccated coconut, a vital ingredient in a wide range of food and beverage products, is seeing increasing demand globally, leading to upward price trends and shifting export patterns.

In the Philippines, the price per metric ton of desiccated coconut reached an average of \$1,911 in May 2024, representing a year-on-year increase of 4.5%. This upward trajectory is a clear indicator of the growing demand and anticipated supply challenges within the market. Indonesia saw an even more dramatic increase, with prices rising to \$1,999 per metric ton, a substantial 35.6% year-on-year increase. Sri Lanka, another key producer, also experienced a notable price hike, with its average price per metric ton reaching \$2,050—a 30.5% increase compared to the previous year. These price surges highlight the tightening supply in the face of robust global demand.


Export data from these countries further underscores the growing pressure on supply chains. The Philippines, a leading exporter of desiccated coconut, saw a significant uptick in its export volumes during the first quarter of 2024. Between January and March, the country exported 41,854 metric tons, marking a 20.8% increase compared to the same period in 2023. This growth is particularly noteworthy as it follows a slight decline in exports the previous year when total exports amounted to 156,274 metric tons, reflecting a 0.4% decrease. The resurgence in 2024 highlights the strong recovery in demand for desiccated coconut, particularly in key markets.

The United States and the Netherlands emerged as the top destinations for Philippine desiccated coconut during this period. The United States imported 43,016 metric tons, while the Netherlands followed closely with 32,660 metric tons. Other significant markets included Canada, Australia, China, Turkey, and Russia, each importing over 4,000 metric tons. This widespread demand across North

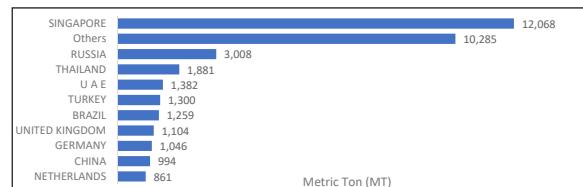

Figure 1. Monthly Price of Desiccated Coconut (US\$/MT), January 2019- May 2024

Figure 2. Export Destinations of Desiccated Coconut from Philippines, January-March 2024 (MT)

Figure 3. Export Destinations of Desiccated Coconut from Indonesia, January-April 2024

America, Europe, and Asia underscores the global reliance on desiccated coconut and the increasing competition among importers to secure supplies.

Indonesia, another major player in the global desiccated coconut market, also reported positive trends in 2024. From January to April, Indonesia exported 35,189 tons of desiccated coconut, reflecting a 3.8% increase compared to the same period in 2023. This growth builds on the momentum seen in 2023 when Indonesia's exports grew by 3.2% annually, following a significant drop in 2022. The steady recovery in Indonesia's export volumes points to the resilience of the country's coconut industry despite past challenges.

Indonesia's primary export markets include Singapore, Russia, Thailand, the UAE, Turkey, Brazil, the United Kingdom, and Germany. These countries have continued to show strong demand for Indonesian desiccated coconut, contributing to the positive export figures. In the first quarter of 2024, import demand surged in several countries, including Singapore, China, Germany, Spain, Italy, and Australia. However, some key markets, such as the United States, the Netherlands, the UK, and Brazil, exhibited a declining trend in imports during the same period. This divergence in demand

Table 1. Global Import Volume (MT) of Desiccated Coconut, 2014-March 2024

Year	World	EU27	US
2014	420,373	103,376	52,259
2015	440,774	94,421	53,696
2016	423,896	104,508	48,107
2017	439,129	111,551	46,590
2018	458,789	108,320	48,067
2019	451,727	103,385	45,531
2020	483,005	100,657	41,056
2021	535,584	115,103	53,568
2022	505,905	118,291	54,372
2023	464,360	112,288	38,741
Jan-Mar 2024	78,902	22,806	7,759

Source: ITC and US Census Bureau F: forecasted figures

patterns highlights the dynamic nature of the global desiccated coconut market, where shifts in stock levels and consumption preferences can lead to fluctuating demand across different regions.

The rise in both prices and export volumes is a clear reflection of the intensifying global demand for desiccated coconut, coupled with concerns over supply constraints. As the market continues to evolve, producers and exporters are likely to face increasing pressure to meet the growing needs of international markets. This scenario could lead to further price increases and heightened competition among importing countries, as they strive to secure a steady supply of this essential commodity.

Looking ahead, the desiccated coconut market is expected to remain dynamic and challenging. With global demand showing no signs of slowing down, producers in the Philippines, Indonesia, Sri Lanka, and other key regions will need to adapt to the evolving landscape. Supply chain disruptions, climate-related challenges, and shifting market preferences will all play a role in shaping the future of this vital industry. As such, stakeholders across the supply chain will need to remain vigilant and proactive in navigating the complexities of the global desiccated coconut market.

COMMUNITY NEWS

INTERNATIONAL COCONUT COMMUNITY ENGAGES IN UN-ESCAP 80TH ANNUAL SESSION

The International Coconut Community (ICC) is proud to announce its active participation as an observer organization in the 80th Annual Session of the United Nations Economic and Social Commission for Asia and the Pacific (UN-ESCAP) held in Bangkok, Thailand. With a steadfast commitment to promoting sustainable development and fostering collaboration on a global scale, the ICC delegation comprising its Executive Director and Market and Statistics Officer actively contribute to the discussions and initiatives at this prestigious event. With a focus on "Leveraging Digital Innovation for Sustainable Development in Asia and the Pacific," the session brought together leaders and experts to explore ways to harness technology for inclusive growth.

UN-ESCAP, established in 1947, serves as a crucial platform for cooperation among its 53-member states and 9 associate members in addressing sustainable development challenges. Dr. Armida Salsiah Alisjahbana, Under Secretary General of the United Nations, and Executive Secretary of UN-ESCAP, emphasized the transformative potential of digital innovation in advancing the 2030 Agenda and fostering knowledge societies.

During the session, the ICC delegation, led by Executive Director Dr. Jelfina, greatly appreciated the initiatives of UNESCAP aimed at leveraging digital solutions for sustainable development. ICC acknowledged its relevance to the challenges faced by coconut-producing countries.

Dr. Jelfina reiterated the ICC's dedication to supporting coconut farmers and enhancing the resilience of the coconut sector through digital innovation. She emphasized the importance of precision agriculture, data-driven decision-making, and supply chain traceability in

optimizing coconut production and ensuring fair trade practices. She also highlighted the role of digital platforms in facilitating market access and empowering coconut farmers with valuable agronomic information. She stressed the need for capacity building and youth empowerment programs to foster innovation and entrepreneurship in rural communities. The session also highlighted the growing significance of digital integration in the region's economy, with merchandise trade comprising 60% of global trade. Digital finance, smart city technologies, and digital government platforms were identified as key drivers of economic growth and resilience.

In a significant development, Dr. Jelfina and Mr. Alit had a courtesy call with Dr. Armida, providing an opportunity to discuss collaborative efforts and explore synergies between the ICC and UN-ESCAP. The meeting underscored the commitment of both organizations to advancing sustainable development goals and promoting cooperation in the Asia-Pacific region. The courtesy call with Dr. Armida provided an opportunity to align the ICC's initiatives with the priorities of UN-ESCAP and explore avenues for collaboration. Dr. Armida commended the ICC's commitment to sustainable development and emphasized the importance of partnerships in driving positive change.

In conclusion, the ICC's participation in the UN-ESCAP 80th Annual Session reflects its commitment to advancing sustainable development goals and promoting the interests of coconut-producing countries. The courtesy call with Dr. Armida signifies the strengthening of collaboration between the ICC and UN-ESCAP, paving the way for joint efforts to harness digital innovation for the benefit of communities in the Asia-Pacific region. (ICC News)

INTERNATIONAL COCONUT COMMUNITY STRENGTHENS COLLABORATION WITH THAILAND TO ENHANCE COCONUT SECTOR

During their visit to Thailand to participate in the UN-ESCAP 80th Annual Session, the

Executive Director (ED) of the International Coconut Community (ICC), Dr. Jelfina, and the Market and Statistics Officer (MSO), Mr. Alit, engaged in a productive courtesy call with Dr. Wilaiwan Kraikruan, the National Liaison Officer (NLO) of Thailand for ICC at the Department of Agriculture, Thailand. The meeting aimed to strengthen collaboration and exchange knowledge for the advancement of the coconut sector.

Dr. Jelfina presented an overview of ICC's programs and activities, highlighting upcoming sessions and ministerial meetings where Dr. Wilaiwan, as the NLO, will act as the Vice Chairman of ICC. Expressing mutual interest, they discussed participation in the upcoming 51st COCOTECH International Conference and Exhibition, where Thailand is willing to share their new research findings to contribute to the discourse on coconut industry innovations.

The discussions between Dr. Jelfina, Mr. Alit, and Dr. Wilaiwan delved into various aspects of capacity building, tissue culture technology, and Integrated Pest Management (IPM) in the coconut sector. Of particular significance was the positive response from the Department of Agriculture (DoA) to ICC's request to share parasitoid *Asecodes hispinarus*, a natural enemy for controlling the coconut pest *Brontispa longissima*.

Recognizing the importance of cooperative efforts, DoA affirmed its willingness to collaborate with ICC by providing the parasitoid for study in Indonesia. As Indonesia lacks this crucial parasitoid, the collaboration aims to propagate it and assess its effectiveness in controlling the *Brontispa longissima* pest. ICC has facilitated the transfer of the parasitoid to the National Research and Innovation Agency (BRIN) of Indonesia for further propagation and research. This collaborative initiative underscores ICC's commitment to fostering partnerships and sharing expertise to address challenges in the coconut sector. By leveraging shared knowledge and resources, ICC and its partners aim to enhance the resilience and

sustainability of coconut farming communities. (ICC News)

ICC INITIATES A YOUTH EMPOWERMENT PROGRAM TO TRANSFORM THE COCONUT INDUSTRY

In a significant move towards bolstering the global coconut industry, the International Coconut Community (ICC) has initiated a comprehensive Youth Empowerment Program. The initiative was introduced and discussed during a virtual meeting held on 13.05.2024, attended by Dr. Jelfina Alouw, Executive Director of ICC, along with Assistant Director and the Professional Staff of ICC, and notable figures such as Mr. Gregory Bardies, Executive Director of Sustainable Coconut Partnership, Mr. Dharmendra Pothuri, Agribusiness Expert from Gatsby Africa, and H. E. Ambassador Diar Nurbintoro from the NAM Center as stakeholders of this initiative.

Addressing the Needs of the Coconut Industry

In her opening remarks, Dr. Jelfina Alouw highlighted the critical need for such a program in today's market environment. She pointed out that market requirements have become increasingly complex and stringent, presenting significant challenges to the coconut sector. Among the issues identified were stagnant coconut production coupled with rising global export demand, low productivity, and high production costs.

"These challenges necessitate a dynamic and innovative approach," Dr. Jelfina emphasized. "Youth, as a vibrant and dynamic force, have the potential to drive transformative change within the industry."

Goals and Objectives

The Youth Empowerment Program aims to address the noticeable absence of youth

involvement in the coconut sector, offering them new and meaningful avenues for engagement. Dr. Jelfina outlined the primary goals and objectives of the program, which include:

- Empowering youth with essential skills and knowledge.
- Fostering entrepreneurship and job creation within the sector.
- Promoting community development initiatives.
- Enhancing the global competitiveness of the coconut industry.
- Facilitating knowledge transfer and creating market access opportunities.

"The ultimate goal is to catalyze sustainable development and enhance global competitiveness in the coconut sector by empowering youth," Dr. Jelfina stated. "This initiative will foster entrepreneurship and promote community engagement."

Planned Activities and Support

Dr. Jelfina also detailed the planned activities, timeline, and proposed budget for the program. Key business opportunities for youth were highlighted, including establishing coconut nurseries and farms, producing coconut-based food and non-food products, and supplying non-standard coconuts. She noted the available facilities at CRI-Sri Lanka, NIIST-India, research centers in Indonesia, Zamboanga Research Center in the Philippines, and coconut industries which could support the program's implementation.

"We are committed to providing the necessary support and resources to ensure the success of this initiative," Dr. Jelfina asserted, calling for the collaboration and support of all involved parties.

Stakeholder Support and Collaboration

The meeting saw enthusiastic support from various stakeholders. Mr. Gregory Bardies of the Sustainable Coconut Partnership expressed his

willingness to contribute to the program actively, emphasizing the importance of establishing and developing an online community to foster the development of the coconut sector.

"We believe in the potential of this initiative to make a significant impact," Mr. Bardies remarked. "An online community will play a crucial role in knowledge sharing and collaborative growth."

H. E. Ambassador Diar Nurbintoro of NAM-CSTC also pledged their full support, requesting more details to facilitate their involvement. "This program aligns perfectly with our goals of promoting sustainable development and community empowerment," the Ambassador noted.

Mr. Dharmendra from Gatsby Africa provided insights into the current state of the coconut industry in Kenya, expressing confidence that the Youth Empowerment Program would have a positive impact on the sector in countries like Kenya. He assured the collaboration of Gatsby Africa in supporting the initiative.

"We are optimistic that this program will drive significant improvements in the coconut industry, especially in regions like Kenya where there is immense potential," Mr. Dharmendra said.

A Bright Future for the Coconut Industry

The Youth Empowerment Program marks a pivotal step in transforming the coconut industry, addressing key challenges, and unlocking new opportunities. With the combined efforts and support of global stakeholders, the ICC aims to foster a vibrant, innovative, and sustainable coconut sector driven by the energy and creativity of the youth.

The ICC looks forward to the successful implementation of this program and the positive changes it will bring to the global coconut industry. (ICC News)

EXECUTIVE DIRECTOR DR. JELFINA ALOUW HIGHLIGHTS SUSTAINABLE INITIATIVES AT 9TH REGIONAL MEETING OF PACIFIC HEADS OF AGRICULTURE AND FORESTRY SERVICES (PHOFAS)

The 9th Regional Meeting of Pacific Heads of Agriculture and Forestry Services (PHOFAS), hosted by the Government of Tonga and supported by the Pacific Community (SPC) and the Food and Agriculture Organisation (FAO), was held virtually from May 15th to 17th. The meeting focused on "Bio-Diversification via Green and Low-Carbon Agriculture & Forestry." The International Coconut Community actively participated as a partner organization, represented by Executive Director, Dr. Jelfina Alouw.

In her official statement, Dr. Jelfina expressed gratitude to the organizers and emphasized the meeting theme's alignment with the ICC's mission and vision. She highlighted the importance of biodiversity and sustainable practices in ensuring the resilience and prosperity of the agricultural and forestry sectors.

"The Pacific region, with its diverse biodiversity and the international coconut gene bank hosted by PNG, plays a crucial role in global initiatives for combating climate change and promoting sustainable development," She stated. "Embracing green and low-carbon approaches is essential for protecting the environment and improving the well-being of communities reliant on agriculture and forestry."

Dr. Jelfina introduced the ICC's Youth Empowerment Program, aimed at revolutionizing the coconut industry through innovation, sustainability, and inclusive growth. This program is designed to inspire and involve the younger generation in driving the coconut sector forward in an environmentally conscious and economically sustainable manner. Highlighting the role of coconut palms in carbon sequestration, she noted, "Coconut palms have the potential to sequester carbon, contributing to climate

change mitigation. By prioritizing sustainable coconut cultivation, member countries can support carbon sequestration, livelihoods, and food security, while also enhancing soil carbon storage and biodiversity."

A significant announcement during her statement was the International Civil Aviation Organization (ICAO) recognition of non-standard coconuts as a viable feedstock for sustainable aviation fuel (SAF). This milestone, supported by the Japan Civil Aviation Bureau and ICC, signifies a growing market demand for coconuts as a source of SAF. Dr. Jelfina emphasized the need to address challenges of low productivity in coconut farming to meet this potential demand effectively.

Dr. Jelfina also highlighted the ICC's commitment to promoting knowledge and technology transfer related to coconut tissue culture, integrated pest management (IPM), and sustainable agricultural practices. She mentioned the upcoming COCOTECH international conference organized by the ICC, to be held from July 22-25, 2024, in Surabaya, Indonesia, and the ongoing training programs for all member countries, including the nine members from the Pacific region. "The number of member countries in the ICC is now 21, with 9 coming from Pacific countries. We are excited to welcome more members from other Pacific countries to join us," Dr. Jelfina noted.

In conclusion, Dr. Jelfina reaffirmed the ICC's commitment to green and low-carbon agriculture and forestry. She emphasized the importance of collaboration among all stakeholders to ensure the success of sustainable initiatives in the coconut industry. "Together, let us create a future where biodiversity thrives, economies grow sustainably, and our agricultural and forestry sectors flourish," she concluded.

The ICC remains dedicated to supporting the efforts of PHOFAS and its members in achieving common goals for a sustainable and prosperous future (ICC News)

HOW HUMBLE COCONUT IS STARTING TO FUEL PARTS OF PAPUA NEW GUINEA

On Karkar island in Papua New Guinea, hundreds of coconut trees stand tall, stretching far into the distance.

Decades ago, the fruit was a lucrative export but over the years it has become less prized on international markets. Now, a small island off the north coast of the country, is using coconuts for another purpose.

The oil from copra – the white flesh from the coconut – is used to produce biodiesel, a renewable fuel made from biological sources, such as vegetable oils or animal fats. On Karkar that fuel is helping to power schools, hospitals and cargo ships.

Tuvaluan men drove small boats to Greenpeace's Rainbow Warrior to transfer passengers and crew to Kioa Island. The Kioa stop of the Rainbow Warrior's voyage, which began months ago in Cairns, Australia, coincides with the Kioa Dialogue, where leaders and representatives from across the Pacific met for the Kioa Climate Emergency Declaration meetings.

It is made at the Kulili plantation, a large estate with roughly 980 hectares filled with coconut trees and cocoa plants that spread across the island. Derek Middleton, the managing director at Kulili, says they produce 600,000 liters of coconut-based biofuel each year.

The project began in 2007, when Kulili developed a small facility to produce coconut biodiesel. Over the years, it has proved successful and the operation has been growing ever since. Middleton is now trying to secure backing to expand the project and increase production.

"[The fuel] is used on Karkar in government vehicles, ambulances, police cars, motor vehicles, ships, generators and our own business," says Middleton.

Other countries in the Pacific including Vanuatu and Fiji have developed similar, small-scale projects and researched using coconut biodiesel as an alternative to traditional fuels, such as diesel.

In many instances, coconut biodiesel has replaced the use of diesel on Karkar and the fuel is sold cheaply to people on the island.

Now, the country's leading science institute, PNG University of Technology (Unitech), is researching how coconut biodiesel could be used more widely as an alternative fuel. In particular, they are exploring if it can be developed and used across Madang province, where Karkar is located, especially in rural and remote communities.

Middleton says expanding the local industry would further reduce dependence on costly fuel imports, but securing backing to grow the operation has proved challenging.

Economist Maholopa Laveil says in Papua New Guinea, provided the investments are profitable and sustainable, development partners may be needed and the positive social impact would be undeniable.

Turning coconut into fuel

Turning coconut into biodiesel has a history in Papua New Guinea – as well as in Madang. It was used by revolutionary forces in Bougainville during the crisis in the 1980s and 1990s.

The process to make the biodiesel involves breaking down the coconut oil by first shredding high quality copra that is pushed through machines to squeeze out the oil. It is then mixed with lye and alcohol, and goes through chemical processes to create the biofuel, Unitech says. The university says when used alone, biodiesel is a more environmentally friendly form of fuel.

"It's just diesel but rather than using crude oil, we use coconut oil in the process of making it,"

says Middleton, adding that it can be used alone or blended with traditional fuels – without the need to modify engines.

Middleton says biodiesel replaces about 50,000 liters of fuel each month, but about 25,000 liters of traditional fuel are still imported.

At present, all the coconuts used are sourced from Kulili. The plantations have been in the hands of the Australian-PNG Middleton family since the 1920s, when William Middleton acquired them after his service in the First World War. Now, they are run by his grandsons, Derek and Brett Middleton. Cocoa is the main export product, and the company is also focused on growing the coconut biofuel operation.

Middleton says that with more funding, the project could produce enough fuel to supply the rest of Madang province, which is home to about 500,000 people. Kulili has approached the Madang government about expanding the project, and says there has been some interest. The Madang authorities didn't respond to requests for comment.

Laveil says developing biofuels could bring benefits to the region, including the potential to employ more people, provided there are avenues for unskilled employment and training. He says for Madang, the immediate benefits would be increased goods and services income if more people were employed in the sector.

The Kulili project could be an example for the region more broadly, Laveil says, describing it as a "good example of the transition to green energy, and a locally driven alternative, and hopefully a successful business model".

He says getting volume and quality to levels at which it may be exported could take years and significant investment, but with local government support it should be feasible.

"For the initial stages of the establishment of biofuel creation, not only coconuts, but sugar and others. If it meets industrial and regulatory

standards, I see the fuel meeting domestic markets before it enters international markets," says Laveil. (*The Guardian*)

REBUILDING DEGRADED LAND IN SURINAME WITH SUSTAINABLE COCONUT FARMS IS RACE TO RESILIENCE IN ACTION.

Nestled on the northeastern coast of South America, Suriname has abundant biodiversity and natural capital, with forests covering over 90% of its territory.

This verdant landscape makes it a pivotal player in global carbon sequestration efforts, absorbing significant amounts of CO₂ and mitigating the broader impacts of climate change.

In September 2023, Pomeroon Trading, a sustainable coconut company in the Caribbean that restores degraded land with sustainable coconut farms, launched an agroforestry project in the Coronie District. This project aims to combine sustainable agriculture with effective carbon offset practices, establishing a coconut seedling nursery and planting hardwood trees across a sprawling 1,200-hectare farm leased from the Surinamese government.

Agroforestry, the practice of integrating trees and shrubs into agricultural landscapes, offers an alternative to conventional farming, which often strips the soil of nutrients and increases susceptibility to pests. By incorporating diverse tree species, Pomeroon Trading's approach enhances biodiversity, improves soil health, and conserves water. This strategy not only echoes the natural dynamics of ecosystems but also strengthens them, creating resilient environments that offer sustainable economic opportunities for local communities.

Alongside its agroforestry initiatives, Pomeroon Trading is engaged in carbon offsetting, a process meant to balance carbon dioxide emissions through projects such as renewable energy, reforestation, and methane capture from waste.

The project's focus extends to restoring mangroves in the Coronie and Commewijne districts, areas critical for their carbon sequestration capabilities and their role as natural defenses against coastal erosion. With rising sea levels and increased storm surges posing a growing threat, these restoration efforts are vital for protecting the coastline and reducing the adverse effects of climate change on vulnerable communities.

At the heart of Pomeroon Trading's strategy is a commitment to community involvement. Local communities, with their profound knowledge of the land and traditional practices, are essential to the success of environmental initiatives. By involving them in both planning and implementation, the project is ensuring that its ultimate goals are not only environmentally sound but also culturally sensitive and socially inclusive.

This community-first approach provides substantial benefits, from enhancing food security through diversified agriculture to empowering local residents with sustainable livelihoods. Moreover, it cultivates a sense of ownership and commitment among the locals, which is crucial for the longevity and success of the projects.

The collaboration with KlimatX and specialists like Silvestrum Climate Associates brings a wealth of knowledge and resources, ensuring that the projects adhere to international standards such as those set by Verra and Initiative Race to Resilience initiative, 20x20. This not only reinforces the scientific and technical rigor of the initiatives but also aligns them with global best practices in sustainability and carbon credit generation.

As the impacts of climate change intensify worldwide, the importance of building climate resilience cannot be overstated. Through its innovative agroforestry and mangrove restoration projects, Pomeroon Trading is playing a key role in protecting Suriname's agricultural and ecological landscapes against extreme weather and other climate-related challenges, safeguarding the future of the

nation's communities and their natural heritage. These efforts not only contribute to Suriname's environmental and economic stability but also set a precedent for sustainable land management practices globally. (*Climate Champions*)

JAMAICA PLANS TO INCREASE COCONUT PRODUCTION

The Jamaican Coconut Industry Board (CIB) intends to increase the export of coconuts and coconut products by at least 5%.

This is among operational plans contained in the Jamaica Public Bodies Estimates of Revenue and Expenditure for the Year ending March 2025.

Coconut milk is becoming increasingly popular in the United States as an alternative to dairy milk, with the coffee company Starbucks selling a lot of coconut-based drinks. However, before the coconuts can be exported, Jamaica must first grow them.

To achieve the target, the CIB will pursue several strategies this year to encourage efficient production, adoption of new tech and provide ongoing research and support to growers, while creating market opportunities for all the products that can be derived from coconut.

In addition, two training programmes for farmers will be held with a focus on seed nut selection, which are expected to increase germination and production rates by 15 per cent, and the CIB also plans to set 55,000 seed nuts and distribute 19,625 seedlings to registered farmers.

Other initiatives by the CIB include the development of coconut varieties that meet market demand.

The research arm of the CIB will explore the use of molecular technologies for crop improvement and development of resilient, robust coconut hybrids. A tissue culture project also will be commencing in collaboration with the Scientific Research Council (SRC).

The CIB also plans to actively pursue business partnerships with industry and other investors. They will conduct 15 climate smart training/ workshops and will conduct research on the use of smart water in the Jamaican coconut sector, as well as investigate and demonstrate (test) the application of drone technology in combatting praedial larceny.

The entity will further seek to expand the network for coconut products through renovation of the coconut shops and the purchasing 230,000 jelly coconuts.

Work will also continue to eliminate or reduce pests that affect the crop and attract new farmers to the industry.

The CIB is projecting an operating deficit of \$341.32 million for this year, down from \$386.68 million in 2023, with a staff complement of 51, an increase from 44 in the previous year.

The CIB was established under the Coconut Industry Control Act (1945) to promote interest in the local industry and encourage the efficient production of coconuts through the distribution of seedlings to registered farmers, provisioning of ongoing research support and the development of marketing opportunities locally and globally.

The responsibility of the CIB includes advising growers on agricultural challenges, offering technical support, and overseeing the administration of the Coconut Replanting Fund.

Additionally, the CIB develops coconut varieties and hybrids that are resistant to disease and possess commercial characteristics. (*The St Kitts & Nevis Observer*)

COCONUT SUBSTRATE WITH MICROCHIPS FOR MORE ROOTABLE VOLUME

"An ideal coconut substrate has a percentage of air between 30 and 50 percent. But then, actually, there's not much attention paid to

the distribution of the air," says Wim Roosen from Dutch Plantin. "Equally important is maximizing the rootable volume." With this in mind, the company has developed the substrate Ozone.

Assessing the coarseness of a substrate by touch and sight actually gives a misleading picture, Wim noted. "For a long time, we built coconut substrates from pith, chips, and fibers. All three components are produced separately, and the mixture is composed based on the customer's preference," he explained.

"To increase air in the substrate, a higher percentage of chips was often chosen. But that gives a wrong impression. Chips indeed provide a higher air percentage, but at the same time, they are a difficult-to-control product: they are cut pieces of a nut, a rather solid product. Some water can be absorbed, but it's hardly bufferable or washable. Moreover, there's hardly any air within the chip itself, meaning roots can hardly grow into them."

He clarifies that the higher air percentage in mixtures with many chips mainly comes from the air between the chips. "The rootable volume, which is what you need, remains limited." He compares it to filling a container with one large marble versus 60 smaller marbles. "The percentage of air is the same, but the distribution is much more even when you mix in smaller pieces." (*Fresh Plaza*)

KERALA AGRICULTURAL UNIVERSITY GOT A PATENT FOR A ROTATING COCONUT SHELLING MACHINE THAT RUNS ON ELECTRICITY

A patent has been granted to a power operated coconut husking machine developed by Kerala Agricultural University (KAU).

The machine was developed by Jayan P. R., Dean of Faculty (Agricultural Engineering); C. P. Muhammad, Professor (Agricultural Engineering); Anu Sarath Chandran, MTech

student, and Kotiary Bineesh Lal, research assistant, of Kerala Agricultural University.

This power-operated continuous coconut dehusking machine is a cutting-edge device designed for efficient coconut processing. This machine features a rotary unit enclosed within a stationary unit, creating a space that optimizes dehusking. Raw coconuts enter through a feeding chute, where knife-like projections delicately loosen the husk. Counter-rotating rollers then separate the husk from the kernel, preserving the valuable coconut meat.

The approximate cost of the machine is ₹50,000. The technology is transferred to Kerala Agro Machinery Corporation Limited, Athani, Ernakulam, according to the KAU sources.

The machine handles green and dry coconuts of various sizes with ease. Its innovative design, high throughput capacity, and minimal breakage rates mark a significant advancement in coconut processing technology. The husk obtained from this machine can be used directly in the coir industry, which is an added advantage, according to the research team.

The patent for this machine represents a major achievement for the KAU in agricultural machinery, promising increased productivity and efficiency for coconut processing industries worldwide. (*The Hindu*)

IMPLEMENTATION OF THE COCONUT DEVELOPMENT BOARD PROGRAMME THROUGH KVKS

ICAR-Agricultural Technology Application Research Institute, Zone VI, marked a significant milestone by obtaining significant funding and implementing Coconut Development Board Schemes through ICAR-Krishi Vigyan Kendra in collaboration with the Coconut Development Board. ICAR-ATARI, Zone VI, organized the Launching-cum-Action Plan Workshop on

Programmes of CDB. Regional Coconut Nursery, Demonstration Plots, Organic Manure Unit, and Area Expansion Programme to boost coconut productivity in Assam and Arunachal Pradesh were discussed during the programme.

Dr. Kadirvel Govindasamy, Director, ICAR-ATARI, Zone VI, highlighted the paramount importance of elevating coconut productivity in the region. He stressed the fact that the north-east region has only 40 nut/tree/year, which is very low compared to the national average of 80. Dr. Govindasamy highlighted the importance of area expansion to enhance yield.

Dr. Rajat Kumar Pal, Director, Coconut Development Board, elucidated various schemes under the purview of the board. Also, the representatives of the CDB gave presentations on various implementation schemes.

The workshop, organized by ICAR-ATARI, Guwahati, and ICAR-KVKS, aimed to maximize coconut yield, expand cultivation's geographical reach, and emphasize value-added production and handicrafts.

The event witnessed enthusiastic participation from representatives of ICAR, and Heads from 23 KVKS, dedicated to enhancing coconut productivity in the region. (*ICAR News*)

AKROFUOM ASSEMBLY TO BOOST COCONUT PRODUCTION AHEAD OF PLANNED PROCESSING FACTORY

The Akrofuom District in Ghana Assembly recently distributed about 10,000 nursed coconut seedlings to farmers within the district.

This initiative aims to boost coconut production, thereby providing income for residents and supplying raw materials for a planned coconut processing factory.

The District Chief Executive, Honorable Dr. Maurice Jonas Woode, announced in his speech that 10,000 seedlings were distributed

to farmers at a rate of 70 seedlings per acre, covering a total of 144 acres.

He emphasized that if farmers successfully plant and nurture these seedlings to maturity, it will enhance the district's economy and generate more income for the community.

Dr. Woode also noted that while the seedlings typically sell for a minimum of 20 cedis each, they were provided to the farmers for free, urging them to grow and care for the plants diligently.

He explained that the distribution aims to make farming more appealing to the district's youth by highlighting the financial benefits and supplying raw materials for a proposed coconut processing factory, which will create jobs and boost the local economy.

Honorable Alex Blankson, the Member of Parliament for the Akrofuom District, highlighted the significance of the distributed seedlings. He noted that coconut trees begin to bear fruit within three years, producing around 200 to 300 coconuts annually. Given the rising prices of coconuts, this underscores their value.

Hon. Blankson also shared that the district assembly plans to build a new coconut processing factory in near future. Targeting this facility, Hon. Blankson and the District Chief Executive have distributed at least 10,000 seedlings annually to farmers over the past five years.

He anticipated the factory will be completed within the next 5 to 10 years, significantly boosting the local economy by providing income for farmers, creating jobs, increasing the district's popularity, and offering nutritional benefits from the coconut fruit.

He urged farmers to diligently plant and care for the seedlings, as they will bring substantial financial benefits, especially to those struggling economically. He concluded by encouraging all farmers to register with the district's Agriculture

Direktorate to access additional benefits from the Ministry of Agriculture.

Amo Koranteng, the Agriculture Director for the district, in his speech revealed that in addition to the distribution of coconut seedlings, the government is also providing palm seedlings to farmers. The district has secured two suppliers, each supplying 10,000 seedlings. Furthermore, an Aggregator will assist farmers by providing financial support, farm inputs, and marketing assistance. He urged all farmers to work diligently to maximize the benefits of their crops.

Mr. Kojo Asamoah, a farmer and beneficiary, expressed his gratitude to the Member of Parliament, the District Chief Executive, the Agricultural Directorate, and the Assembly for providing the seedlings free of charge. He encouraged all farmers who received seedlings to plant and nurture them to maturity.

Georgina Gyamfua, a beneficiary thanked the Assembly, especially the Member of Parliament, the District Chief Executive, and the Agric Directorate. She highlighted the benefits of coconuts, such as nutritious coconut oil and increased income and jobs. She urged farmers to plant and care for the seedlings to maximize these benefits. (*Modern Ghana*)

GOA'S AUTOMATED COCONUT-PICKING DEVICE RECEIVES A PATENT

A patent has been granted for an unmanned fruit-plucking device, Cocobot, tailored specifically for coconut harvest in Goa. The device is an innovation of the Indian Council of Agricultural Research-Central Coastal Agricultural Research Institute (ICAR-CCARI), which collaborated with Goa University for the project.

Traditional coconut harvesters, known as Padels, often face practical difficulties in the perilous task of climbing coconut trees that hinder effective harvesting.

The newly patented Cocobot will make the effort safer and faster. Cocobot is the brainchild of a retired principal scientist of the ICAR-CCARI, A R Desai, and the senior professor of electronics at Goa University, Rajendra Gad. It aims to eliminate the drudgery and hazards associated with manual coconut harvesting.

The unmanned machine is equipped with cutting-edge technology and can be operated remotely from the ground. It features a robotic arm and a video system for precisely locating and plucking coconuts. Importantly, this ground-breaking innovation assures worker safety by allowing for remote harvesting, which reduces the inherent dangers of manual operations.

"We now require entrepreneurs to come forward and commercialize this technology so that it can benefit the end-users — the farmers," Desai said.

The application was initially submitted in 2017 to the Indian Patent Office.

Speaking on the operational capabilities of Cocobot, Gad said that the device can harvest approximately 12-15 palms per hour. "The Cocobot's versatility extends beyond coconut harvesting, as it can be modified for use in harvesting other crops, such as areca nuts," he added.

The patent grants the collaborating entities, Goa University and ICAR-CCARI, a significant royalty percentage recognizing their role in the development and commercialization of the device.

Building upon the success of Cocobot, the team unveiled an upgraded version in 2020, named Fly Cocobot, which harnesses drone-based technology for enhanced efficiency. This second iteration, tailored to excel in areas with higher yield was reported by TOI in 2021.

Now, ICAR-CCARI and Goa University are actively pursuing patent protection for the novel design of Fly Cocobot.

"The Cocobot and its drone-based counterpart pave the way for a more sustainable and efficient future in agriculture," Desai said. (*The Times of India*)

THE PHILIPPINE NORTHERN SAMAR EYES INVESTMENTS IN COCO PROCESSING

The Northern Samar provincial government in Philippines has tied up with the Board of Investments (BOI) to encourage more investors in the local coconut industry.

Northern Samar Provincial Economic Development and Investment Promotions Office (PEDIPPO) head John Allen Berbon said that despite the high coconut yield in the province, there is a lack of existing facilities that will process it into high-value products.

"We had a recent meeting with BOI officials to discuss Northern Samar's strengths in the coconut sector, assessing the existing number of producers, processors, and consolidators, and pinpointing strategic locations for potential investments," Berbon said in a phone interview.

The goal is to attract an investor to establish a medium-scale integrated coconut processing center with a capacity of producing 60 metric tons of coconut products per day. The required investment is PHP240 million to PHP300 million.

PEDIPPO aims to leverage the success of the coconut investment pitch to attract investments in other key commodities in Northern Samar, prioritizing those with significant economic value, according to Berbon.

"This proactive approach underscores the province's commitment to fostering economic growth, attracting new investments, and creating a conducive environment for sustainable development," he added.

Northern Samar ranks as the 18th largest producer of coconut in the Philippines, with a

yield of 315,000 metric tons in 2023, according to the Philippine Coconut Authority.

Berbon said that despite its substantial coconut production, the province faces limited competition with only one oil mill, one coco-sugar producer, two virgin coconut oil producers, and three coco coir producers.

The province has 86,000 registered coconut farmers, including landowners, workers, and tenants. (*Philippine News Agency*)

COCONUT DEVELOPMENT BOARD URGED TO PREVENT ADULTERATION IN COCONUT OIL

To facilitate interaction with major stakeholders on quality management and food safety standards, Coconut Development Board organized one day seminar on prospects and challenges in the coconut oil sector.

Thalath Mahmood, President, Cochin Oil Merchants Association (COMA) in his inaugural address emphasized the need for keeping quality standards in coconut oil production and requested the support of the Board in preventing adulteration of coconut oil.

B. Hanumanthe Gowda, Chief Coconut Development Officer, spoke on the need to concentrate on processing, value addition, marketing, and exporting coconut products for the inclusive growth and sustainable development of the coconut sector.

Officials from Food Safety and Standards Authority of India (FSSAI), Bureau Standards, Bureau Veritas, National Institute for Interdisciplinary Science and Technology (NIIST), Regional Analytical Laboratory (RAL) and officials of Coconut Development Board led the seminar.

Representatives from coconut oil manufacturers attended the program. The meeting provided a opportunity for sharing

advances in technology related to coconut processing and the interaction provided insights into the challenges and constraints faced by the processors which are expected to lead to necessary policy initiatives in the sector. (*The Hindu Business Line*)

INDIAN INSTITUTE OF SCIENCE EDUCATION RESEARCH SHOWS HOW COCONUT TREES CAN BE FREE OF HARMFUL SUBSTANCES

A professor at the Indian Institute of Science Education Research in Kolkata conducted a scientific investigation that demonstrated how coconut trees can be devoid of dangerous toxins.

The institute held a press conference in Calcutta on Friday to shed light on the scientific developments by three of its scientists.

Two other studies included developing a novel way to create industrially useful chemicals using atmospheric carbon dioxide and new ways of treating cancer.

Gopala Krishna Darbha, a professor at the institute located in Nadia district, said the Hooghly carries pollutants from industrial activity upstream besides geogenic arsenic. This contaminates the soil and groundwater in Bengal.

Darbha and his students investigated the uptake of toxic elements in arsenic-contaminated areas. "The study revealed coconuts growing in these areas did not have any trace of these harmful, potentially toxic elements (PTEs)," he said.

"The coconuts seemed to act as a natural filter, preventing these toxic elements from entering the core of the fruit itself," the professor added.

Swadhin Mandal, a professor at the institute, said the significance of creating industrially useful chemicals using atmospheric carbon dioxide, is that it may pave the way to achieving carbon neutrality.

Rahul Das, another professor at the institute said, a fluctuation at the cellular level often triggers many major diabetes-related complications and cancer. Once such fluctuation happens, some antenna-like structures on the cells' surface, called receptors, malfunction.

Das and his team at the department of biological sciences, discovered how a special lock inside the type-1 receptor helps to keep it switched off when it is not needed.

This discovery, he said, may lead to the development of new treatment of conditions, especially carcinoma (cancer). (*The Telegraph*)

INITIAL YIELD PERFORMANCE OF 4 NEW COCONUT HYBRIDS REPORTED BY DOST-PCAARRD, PCA

The genetic potential and yield performance of four newly developed single-cross coconut hybrids are being evaluated through a project funded by the Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development of the Department of Science and Technology (DOST-PCAARRD), through the Coconut Hybridization Program (CHP).

Understanding coconut hybrids' ability to meet market demands—as the need for high-value coconut products grows—requires an understanding of their genetic potential and yield performance.

Led by Gilbert M. Eslit of the Philippine Coconut Authority-Zamboanga Research Center (PCA-ZRC), the five-year project, "Performance Evaluation of the Newly Developed Single Cross Hybrids Using Selected Varieties with Special Traits," targets to generate performance profiles of four single-cross hybrids.

PCA-ZRC developed the said hybrids with unique and special traits, which utilized Tutupaen Tall (TPNT) as source of pollen, and Sanchez-Mira Tall (SCHT), Markham Valley Tall (MVT), Malayan Red Dwarf (MRD), and Galas

Green Dwarf (GALD) as mother palms. These hybrids are MRD x TPNT, GALD x TPNT, SCHT x TPNT, and MVT x TPNT.

According to Eslit, the project maintains 120 palms per hybrid at the field genebank of PCA-ZRC.

The hybrids will be further characterized and evaluated in terms of shell thickness, seed nut size, water, oil qualities, coco sap and sugar yield, prolificacy, and general combining ability.

In its first year of implementation, the project team conducted preliminary screening of the extracted deoxyribonucleic acid (DNA) samples from 1,632 tissue samples collected from hybrids and parental palms using simple sequence repeat (SSR) markers to validate the legitimacy of the hybrids. Confirmation of unique alleles among these hybrids is underway.

Meanwhile, field assessment showed that hybrids have an average palm girth of 80–100 centimeters (cm) and can grow to an average height of 600–700 cm.

Initial reproductive data also reveal that some hybrid palms, such as MRD x TPNT, started to bloom and produce fruits at 34 months from field planting, which is earlier than anticipated. MRD pairs well with local and foreign tall varieties, while TPNT has a thick shell. With this, the project team expects a high yield of copra and oil, good fatty acids, a thick shell, and an excellent toddy from the MRD x TPNT hybrid.

The study will examine the hybrids' ecological adaptation in various environments over the coming years.

Due to persistent encounters with coconut scale insect (CSI) infestations at the farm sites, Science and Technology (S&T) Consultant Violeta N. Villegas suggested incorporating the team's pest management strategies in their reports as hybrid palms were still able to demonstrate robust growth and development consistently.

CSIs are invasive pests that feed on the sap of coconut palms, resulting in slowed development, leaf yellowing, and in severe cases, the palms' death.

The project review was led by DOST-PCAARRD's Deputy Executive Director for Research and Development Juanito T. Batalon, along with Crops Research Division (CRD) Director Leilani D. Pelegrina, Industry Strategic S&T Program (ISP) Manager for Coconut Alissa Carol M. Ibarra, and other key personnel.

The DOST-PCAARRD team also conducted a field monitoring visit to validate the result of the project. (*Palawan News*)

SCHOLARSHIP FOR COCONUT FARMERS' DEPENDENTS

THE Coconut Farmers and Industry Development Plan (CFIDP) announced that they are offering scholarships for the coconut farmers' children to provide educational opportunities and support to families in the coconut farming industry.

The project operates under the Coconut Farmers and Industry Trust Fund Act, guided by the Ched-PCA Joint Memorandum Circular No. 1, series of 2023.

The scholarship program shall be accessible to qualified and deserving coconut farmers and/or their families duly registered under the National Coconut Farmers Registry System.

The program shall also cover undergraduate students who will enroll or are currently enrolled in agriculture, agricultural engineering, agribusiness management, agricultural economics, and other courses identified by the Philippine Coconut Authority (PCA).

"This program is intended for coconut farmers. We know that the coco levy fund is controversial, so this is it. It's time to give this to our coconut farmers" Richel E. Zamora, Training Specialist II from the Agricultural Training Institute Regional

Training Center-Davao Region who serves as the Alternate Focal for the Coconut Farmers & Industry Development Plan (CFIDP), said.

Zamora emphasized: "The program includes not only the direct dependents of coconut farmers like their children, but also the children of their laborers. They are also part of the program. Additionally, indigenous people, single parents, PWDs, and senior citizens with dependents are beneficiaries as well."

Now in its third year, the act was implemented nationwide in partnership with 16 other agencies.

It was crafted to change the social equity of coconut farmers and alleviate poverty by providing quality education to them and their dependents.

It is expected to improve agricultural productivity and modernization in the coconut industry by increasing the knowledge of coconut farmers and their dependents in scientific agricultural advancements and related fields. (*Sunstar*)

TRADE NEWS

INDUSTRY PERSPECTIVE

Lower prices prevailed in the vegetable oils market this week.

Coconut oil in Rotterdam market remained a dull affair for 12 weeks now absent buying support. The market opened with lower offers at \$1,390-1,430/MT CIF for positions from June/July through to November/December. Prices eased afterwards but promptly recovered towards the weekend and closed the week on the upside at \$1,392.50-1,413.75/MT CIF.

By contrast, the palm kernel oil market continued to see action, reporting a couple of trades towards the weekend at \$1,140-1,150/

MT CIF (\$1,150 a week ago). However, sellers similarly started off this week with lower offers at \$1,150-1,225/MT CIF for positions from May/June through to December/January 2025 and settled at the close in the positive territory at \$1,160-1,200/MT CIF.

Although coconut oil has maintained a price premium of over \$200/MT against palm kernel oil, spreads per position this week have contracted from respective last week levels save in a couple of last quarter 2024 positions. This brought the weekly average slightly lower to \$225.96/MT from \$228.53 of the preceding week. Premium per position are as follows: May/June \$228.50 (\$239.38 last week); June/July \$230.13 (\$240.00); July/August \$235.63 (\$243.50); August/September \$224.31 (\$226.00); September/October \$228.75 (\$220.90); October/November \$226.88 (\$220.90); November/December \$207.50 (\$209.00).

At the CBOT soya complex market, soybean futures opened higher fueled by concerns rains could delay planting, but news of rapidly advancing US harvest kept the market to the downside. Also dragging the market was the weaker soybean oil prices and the lack of Chinese interest. Later during the week, the market bounced back on spillover gain generated from higher soybean meal prices and short-covering activity ahead of the long 3-day weekend.

At the palm oil section, the market opened in the positive territory, continuing Friday's gains, influenced by higher CBOT soybean oil. However, the market eased shortly under pressure from higher palm oil production and weak exports from Malaysia. Towards the weekend though, a return to the upside ensued on estimates lately of lower Malaysian production for the month of May. Eventually, however, the market closed this week lower on weaker CBOT soybean oil and a report on improving production. The market ignored positive factors like weaker Malaysian currency and a surveyor's estimate of higher exports for the period May 1-25 compared to same time a month ago.

Prices of tropical oils for nearest forward shipment continued to show mixed trends with lauric oils down from last week. Coconut oil ended its two-week gaining streak, shedding for this week \$15.37 from \$1,408.50 last week to \$1,393.13/MT CIF currently; palm kernel lost another \$5.50 from \$1,168.50 to \$1,163.00/MT CIF. Palm oil, on the other hand, bounced back and gained \$10.50 from \$965.00 to \$975.50/MT CIF. Consequently, coconut oil shaved its price premium against palm kernel oil from \$240.00 last week to \$230.13/MT this week as well as against palm oil from \$443.50 to \$417.63/MT. (*UCAP Bulletin*)

MARKET ROUND-UP OF COCONUT OIL

The coconut oil market in Rotterdam was still subdued. The market opened easier but was able to arrest continued decline and closed in the upside with sellers quoting: \$1,390 for May/June; \$1,397.50 for June/July; \$1,392.50 July/August and August/September; \$1,411.25 for September/October; \$1,413.75 for October/November; and \$1,405/MT CIF for November/December. Buyers remained absent during the week.

The FOB coconut oil market was still closed. (*UCAP Bulletin*)

COCONUT GARDEN CAN YIELD \$25,000 FROM CARBON CREDIT SALE

More recently, the Ministry of Agriculture and Rural Development launched the project on developing 1 million hectares of high-quality and low-emissions in the Mekong River Delta. Deputy Minister of Agriculture and Rural Development Tran Thanh Nam said Vietnam's first low-emission rice will be produced by August 2024.

Mekong Delta is not only a rice granary, but also the homeland of coconut trees. All parts of coconut trees, from trunks to leaves and flowers, can be used to create added value products. And farmers can also obtain carbon credits from coconut plantation.

At Sokfarm, owned by Thach Thi Chal Thi and Pham Dinh Ngai, organic coconut trees are planted for nectar. From nectar, they can make a wide range of products, from soy sauce, honey vinegar, molasses, fermented coconut nectar, cocoa beans and coconut flower nectar.

According to Ngai, a cluster of coconut flowers can create about 10 coconuts, which can sell for VND50,000. Meanwhile, if using the flowers for nectar, a cluster of flowers can bring 25 liters of nectar, worth VND250,000. As such, a farming household can earn up to VND6 million a month if they have 20 coconut trees.

Sokfarm has 50 households growing organic coconut in accordance with international standards for nectar.

Chal Thi said climate change is getting severe and coconut is a kind of tree that sustain drought and saline intrusion in Mekong Delta. Sokfarm aims to have 500 farming households by 2030 and 1,000 households by 2035 to grow coconut trees.

Growing coconuts not only brings money from nectar exploitation, but also makes a great contribution to fight against climate change. Ngai and his wife are seeking information and following procedures to be able to sell carbon credits from coconuts.

It is estimated that every coconut tree, after 10 years of growing, can create the number of carbon credits worth \$1 per tree. The farm now has 25,000 coconut trees more than 10 years old, which can bring at least \$25,000 to farmers. Meanwhile, they are growing more and more coconut trees every year.

In mid-April, Ben Tre province began assessing its potential to join the provincial carbon market. Local agencies are researching and building Ben Tre provincial carbon credits in some fields, with focus on coconuts.

Carbon credits have emerged as a desirable possibility for Ben Tre's specialized coconut

producing area and the agriculture sector amid the move toward sustainable growth and emission reductions.

Ben Tre now has over 79,000 hectares of coconut growing area and is estimated that one hectare of coconut can contain 25-75 tons of CO₂. With a carbon credit price of \$5 per ton of CO₂ at minimum, Ben Tre can collect \$10-30 million from coconut trees.

Additional income from coconut carbon credit sale

In Vietnam, coconuts are a key agricultural crop. Vietnam now ranks seventh in the world in coconut production with a growing area of 188,000 hectares, mostly located in the provinces of Ben Tre, Tra Vinh, Tien Giang and Vinh Long.

In 2023, coconut exports brought turnover of \$900 million to Vietnam. According to Nguyen Thi Kim Thanh, chair of the Vietnam Coconut Association, Vietnam's coconut export turnover may reach \$1 billion by the end of 2024.

Thanh said the products made of coconut are diverse, from food to handicrafts, creating livelihood for 390,000 Vietnamese households.

The economic value of coconut trees will be increasing further thanks to coconut carbon credit sales. Vietnam has committed to cut greenhouse gas emissions to zero by 2050. Meanwhile, one hectare of coconut trees can absorb 70-75 tons of CO₂ each year.

An expert has estimated that with the existing coconut growing area and the carbon absorption capability of the tree, if Vietnam sells coconut carbon credits at prices equal to forest carbon credits, the country would earn trillions of dong more each year.

However, Tran Minh Hai from the School for Public Policies and Rural Development, pointed out that to create carbon credits from coconuts,

farmers need to change their cultivation methods and use new technologies to reduce greenhouse gas emissions. (*Vietnam Net*)

OTHER VEGEOIL NEWS

P600-MILLION PALM OIL REFINERY TO BE ERECTED IN SOCCSKSARGEN REGION

Garcia Refinery Corp. (Gareco) has started construction of its P600-million palm oil refinery in Soccsksargen region, the first of its kind in Mindanao. The facility, which will become the first modern locally developed refinery in the island, will produce high-quality palm oil derivatives such as palm olein, palm stearin, margarine and other products for both the local and foreign markets.

State-run Land Bank of the Philippines (Landbank) extended a P450 million loan to Gareco, which is part of the AC Garcia Group of Companies, for the development of the planned refinery in Soccsksargen region which comprised of South Cotabato, Cotabato, Sultan Kudarat, Sarangani and General Santos City. "The refinery mill is expected to make oil palm products more accessible and affordable for the local markets, and serve as a stable source of income for oil palm growers from Sultan Kudarat and Maguindanao," the bank said.

In order to oversee 3,065 hectares of oil palm fields, Gareco partnered with 63 farmers. The Department of Agriculture claims that since 14,000 hectares of cropland in Sultan Kudarat alone have been planted with oil palms, the potential supply of oil palm fruits is substantially greater.

"The establishment of the first palm oil refinery in the Soccsksargen region underscores the immense potential for growth and development within the palm oil sector. This embodies the aspiration of the industry stakeholders to become a dynamic, innovative, and

self-sufficient industry that provides benefits and stable supply of vegetable oils for the country," Agriculture Secretary Francisco Tiu Laurel, Jr. said in a statement. (*UCAP Bulletin*)

MALAYSIAN OIL PALM PLANTERS' YIELD POISED TO RECOVER IN 2024: MAYBANK IB

Maybank Investment Bank Bhd (Maybank IB) expected the yields of Malaysian oil palm planters to recover in financial year 2024 (FY2024) following the return of guest workers, a report from Kuala Lumpur (Bernama) said on May 20. "As labor shortages in Malaysia have been largely addressed with the gradual return of guest workers, we now expect yields to improve in FY2024-FY2025," it said in a research note.

It said that some of the country's listed plantation companies reported lower fresh fruit bunches (FFB) and crude palm oil (CPO) yields in FY2022-FY2023 versus FY2020-FY2021 due to lack of guest workers harvesting and field maintenance following border closures during the COVID-19 pandemic. (*UCAP Bulletin*)

INDONESIA WILL TEST B40 IN NON-AUTOMOTIVE SECTORS AND CONTINUE TO EXPAND THE USE OF BIODIESELS

According to the Indonesian Palm Oil Association (GAPKI), the ministry of energy and mineral resources (MEMR) of the Indonesian government will carry out a number of biodiesel 40 percent (B40) tests in non-automotive sectors, such as trains, ships, agricultural machinery and equipment, heavy equipment units, and power plants.

The B40 has already been tested in the automotive industry

The MEMR's Oil and Gas Research Institution (LEMIGAS) Chairman Mustafid Gunawan said that the tests will be conducted during the next

eight months. "Currently, LEMIGAS is conducting a test of B40 in generator engines and industrial heavy vehicles," he said in a written statement last week. The institution has also conducted survey of the development of infrastructure for preparations of the B40 test in trains, he added.

Currently, the government is implementing the B35 mandatory production policy, which is a mixture of 65 percent fossil diesel and 35 percent fatty acid methyl ester (FAME) from palm oil, at an expected total production of 13.40 million kiloliters in 2024. The quota is based on the success of B35 program in 2023. The MEMR projected that minimum stock of palm oil needed to support the B40 program is around 17.57 kiloliters. This assumes that the diesel fuel needs in 2024 would be 38.04 million kiloliters. (*UCAP Bulletin*)

SHRINKING OIL PALM PLANTATIONS TO HAMPER INDONESIA'S IMPLEMENTATION OF B100

The decline in oil palm plantations in Indonesia will make it challenging for the incoming administration of President-elect Prabowo Subianto to carry out the biodiesel 100 percent (B100) program, according to a news article published on the website of the Indonesian Palm Oil Association (GAPKI).

Budi Mulyanto, Head on Palm Oil Study Center at Bogor-based University of Agriculture (IBP), told the press that in the current supply condition, the country will find it difficult to allocate crude palm oil (CPO) for food consumption and for feedstock for energy production. Upgrading from the current B35 to B100 will at least double the need for CPO feedstock to produce the biodiesel.

He cited the continued shrinkage of oil palm plantations is caused by the implementation of the omnibus law on job creation. "Of the total 3.4 million hectares of plantation categorized as encroaching forests, 2.4 million hectares are subjected to the implementation of article 110 B. It means that such

plantations are only allowed for just one cycle of cultivation and after that they will become forest areas," he said. Article 110 B categorizes plantation areas as illegal, although such had been developed under the transmigration program initiated by former President Suharto since 1986, he said. (*UCAP Bulletin*)

HEALTH NEWS

WHICH IS BETTER: FRESH VS PRE-SHAVED COCONUT WATER (AND WHY)?

Pre-shaved coconut water, sometimes referred to as pre-packaged or pre-cut coconut water (that has been processed to remove the water) may seem more convenient than fresh coconut water, but is it really "health in a bottle"?

According to Sushma PS, chief dietitian, Jindal Naturecure Institute, pre-shaved coconut water "has significant disadvantages".

But before we learn more about it, let's understand what makes coconut water a healthy drink.

Coconut water is a natural beverage rich in electrolytes like potassium, sodium, and magnesium. It helps replenish lost fluids and electrolytes, making it ideal for hydration during hot summer days. "Additionally, coconut water contains cytokinins, which have been associated with anti-ageing and anti-cancer effects, promoting overall health and vitality," said Dr. Ekta Singhwal, dietitian, Ujala Cygnus Group of Hospitals.

Fresh vs pre-shaved or pre-packaged coconut water

To increase its shelf life, pre-shaved coconut water is frequently pasteurised or treated which "diminishes the nutritional value and flavour of fresh coconut water", said Sushma.

Coconut water is primarily composed of water (94 per cent), sugars (aldohexose, fructose, and disaccharide) (5 per cent). Minerals, calcium, and manganese are abundant, but the metallic element is scarcely present. "It deteriorates and loses much of its sensory and organic process characteristics when exposed to air," said Haripriya N, executive nutritionist, Cloudnine Group of Hospitals, Chennai, T-nagar.

Manufacturers may utilize bio-preservatives and chemicals to extend the shelf life of pre-shaven coconut water and keep its flavor, according to Haripriya. "These can include sugars, artificial flavours, and stabilisers. Consuming coconut water in its natural state ensures you avoid these unnecessary additives and enjoy the purest form of this beverage," said Haripriya.

Sushma further noted that pre-shaved coconut water containers can include plastic or other non-biodegradable elements, which pollute the environment. "Its carbon footprint is further increased by the energy and materials needed for transportation and manufacture" said Sushma.

Furthermore, pre-shaven coconut water "isn't as authentic or fresh as the original". "The distinct flavour and fragrance of freshly extracted coconut water are lost in pre-packaged varieties," Sushma elaborated. Then there is the risk of contamination. "Processing coconut water into pre-shaved form may increase the risk of contamination if proper hygiene and quality control measures are not strictly followed during production and packaging. Fresh coconuts, when handled correctly, generally have a lower risk of contamination," said Haripriya.

Lastly, buying a full coconut and extracting the water yourself can be less expensive than buying pre-shaved coconut water. Purchasing entire coconuts guarantees freshness and lets you use the flesh, which is high in fibre and good fats, added Sushma.

In conclusion, experts advise selecting fresh, whole coconuts rather than shaved coconut water to provide the highest quality of flavor,

nutrition, and environmental sustainability. (*Indian Express*)

WHAT HAPPED TO MY SKIN AFTER A MONTH OF DRINKING COCONUT WATER

For a very long time, coconut water has been heralded as a natural remedy because of its many health advantages and capacity to hydrate. I started a month-long experiment of drinking coconut water every day out of curiosity about its possible impacts on skin health. I was happily surprised by what happened throughout this experiment and was excited to share my experience.

Discovering the benefits

As I incorporated coconut water into my daily routine, I noticed a gradual improvement in the overall appearance and texture of my skin.

An increase in hydration levels was one of the most obvious effects. Coconut water's high electrolyte content helped my skin feel softer and more supple than ever by restoring moisture from the inside out.

Radiant complexion

After just a few weeks of regular consumption, my complexion took on a newfound radiance. The vitamins and minerals present in coconut water, including vitamin C and potassium, seemed to work wonders in brightening my skin tone and reducing the appearance of dullness. Even on days when I skipped my usual skincare routine, I felt confident in my skin's natural glow, a testament to the transformative power of this humble beverage.

Combatting skin woes

I also observed a noticeable improvement in a few skin issues that I had been dealing

with earlier in the month. Sporadic breakouts became fewer and farther between, but stubborn blemishes appeared to disappear more quickly. Furthermore, it seemed that the anti-inflammatory qualities of coconut water relieved redness and irritation in sensitive areas of my skin.

Enhanced skin health from within

Drinking coconut water appeared to improve general skin health from the inside out, independent of its exterior effects. Its antioxidant qualities helped maintain a more robust and youthful-looking skin by guarding against damage from free radicals and environmental stressors. With every day that went by, my skin seemed smoother and younger, as if it were better able to combat the ravages of aging.

I tried drinking coconut water for a month, and the effects were amazing for my skin. The advantages were evident, ranging from enhanced durability and hydration to better texture and brightness. For a natural boost to the health and vibrancy of your skin, I wholeheartedly advocate using coconut water in your daily regimen, however individual results may vary. In my opinion, coconut water has merited a permanent spot in my skincare regimen, and I anticipate continuing to benefit from it for many years to come. Take a regular sip of coconut water and notice the change. (*The Times of India*)

COCONUT RECIPE

KELAGUEN UHANG (COCONUT PICKLED SHRIMP WITH CHILES)

Ingredients:

- 1 ½ pounds raw large shrimp, peeled and deveined
- 4 cups boiling water
- 2 cups finely shredded fresh coconut or unsweetened shredded coconut

- 1 cup thinly sliced scallions (about 4 scallions), plus more, thinly sliced at an angle, for garnish
- ½ cup fresh lemon juice (from about 4 lemons), plus more to taste
- ½ teaspoon kosher salt, plus more to taste
- 3 red Thai chiles, stemmed, seeded if desired, and thinly sliced (optional)
- Steamed white rice, tortillas, or tostadas, for serving

Instructions:

1. Chop shrimp into 1/4- to 1/2-inch pieces; place chopped shrimp in a large fine wire-mesh strainer placed over the sink. Gradually pour 4 cups boiling water evenly over shrimp, stopping occasionally to stir and shake strainer. Drain shrimp well, and transfer to a large nonreactive bowl.
2. Add coconut, scallions, lemon juice, salt, and chiles, if using, to bowl with shrimp; stir until well combined. Cover and refrigerate at least 1 hour or up to 8 hours.
3. Stir shrimp mixture, and season with additional lemon juice and salt to taste. Garnish with additional sliced scallions. Serve with steamed rice, tortillas, or tostadas.

(Food and Wine)

STATISTICS

Table 1. Indonesia's Monthly Exports of Desiccated Coconut, 2022 – 2024

Month	2022		2023		2024	
	Volume (MT)	Value (FOB) US\$'000	Volume (MT)	Value (FOB) US\$'000	Volume (MT)	Value (FOB) US\$'000
January	10,653	18,050	8,167	8,922	8,187	9,140
February	8,742	14,351	8,690	9,655	8,457	10,099
March	11,433	15,740	9,478	10,140	10,797	12,620
April	10,006	13,741	7,557	8,109	7,748	10,875
May	5,690	9,170	8,441	9,117		
June	8,655	11,654	9,149	10,060		
July	7,999	10,644	9,789	11,567		
August	10,267	12,582	11,912	13,066		
September	9,591	12,046	10,611	11,792		
October	8,579	10,762	10,705	11,725		
November	8,867	9,728	10,110	11,229		
December	9,972	10,921	9,059	10,567		
Total	110,455	149,388	113,671	125,949	35,189	42,734

Source: BPS-Statistics Indonesia

Table 2. Philippines' Monthly Exports of Desiccated Coconut (in MT), 2021 – 2024

Month	2021	2022	2023	2024
January	10,523	11,810	8,086	10,946
February	11,976	14,603	12,072	16,330
March	13,266	18,636	14,485	17,894
April	10,995	14,274	10,390	
May	11,933	13,147	14,861	
June	13,990	13,725	14,746	
July	13,669	10,737	14,297	
August	15,302	11,722	13,329	
September	14,920	13,174	14,389	
October	16,118	10,512	13,540	
November	16,415	11,531	13,204	
December	14,703	13,059	12,875	
Total	163,810	156,930	156,274	45,170

Source: Philippines Statistics Authority

Table 3. Sri Lanka's Monthly Exports of Desiccated Coconut (MT), 2022 – 2024

Month	2022		2023		2024	
	Volume (MT)	Value (FOB) US\$'000	Volume (MT)	Value (FOB) US\$'000	Volume (MT)	Value (FOB) US\$'000
January	3,049	8,334	2,359	4,418	2,359	5,894
February	2,988	8,049	2,658	5,168	3,402	6,915
March	3,822	8,900	2,759	5,677	3,592	7,780
April	3,197	7,954	2,110	4,295	2,983	6,211
May	3,692	8,533	2,986	6,115		
June	4,118	9,753	2,573	5,058		
July	3,315	7,374	3,003	6,138		
August	4,121	8,987	3,879	7,388		
September	3,543	7,026	4,116	7,588		
October	3,795	6,910	3,929	7,113		
November	4,111	7,163	4,179	7,882		
December	4,040	7,128	3,438	6,846		
Total	43,791	96,109	37,989	73,687	12,336	26,799

Source: Coconut Development Authority, Sri Lanka

Table 4. Export Volume of Desiccated Coconut by Country of Origin, 2024 (MT)

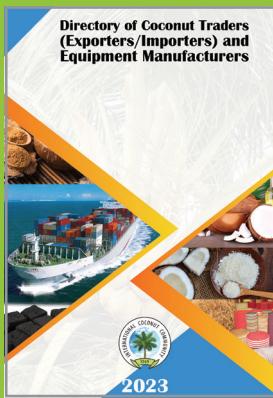
Month	Malaysia	Thailand	India	Brazil
January	833	153	219	4
February	766	137	224	5
March	1,237	86	435	7
April		93		8
May				
June				
July				
August				
September				
October				
November				
December				
Total	2,835	469	878	24

Source: ITC & Thai Customs

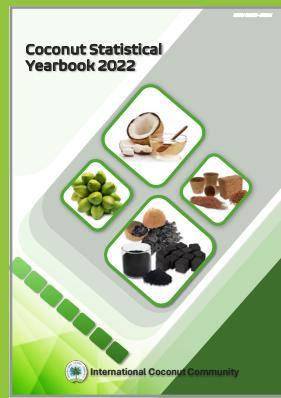
ICC PUBLICATIONS AVAILABLE FOR SALE

Climate Change Adaptation and Mitigation Strategy for a Resilient and Sustainable Coconut Agroindustry - Proceedings of the 50th COCOTECH Conference & Exhibition, 2022

Price: US\$50


COCOINFO International Vol 30 No. 2, 2023 – A semi-annual, scientific and semi-technical based in order to disseminate useful information of the coconut sector, around the globe.

Annual subscription price:
US\$35 (ICC Member Countries)
US\$40 (Non-Member Countries)


Directory of Coconut Traders & Equipment Manufacturers

Price: US\$50

Coconut Statistical Yearbook 2022

Price:
US\$50 (ICC Member Countries)
US\$60 (Non-Member Countries)

CORD Vol. 39, 2023 – An annual international journal on Coconut Research & Development

Price:
US\$40 (ICC Member Countries)
US\$50 (Non-Member Countries)

Cocommunity – Monthly newsletter of the International Coconut Community

Annual subscription price:
US\$50 (ICC Member Countries)
US\$60 (Non-Member Countries)

* All prices are excluded from shipping charges

Order via website www.coconutcommunity.org or write e-mail to iccc@coconutcommunity.org
Payment can be made by PayPal & wired bank transfer

WORLD COCONUT DAY

Competition

2024

Coconut for a Circular Economy:
Building Partnerships for Maximum Value

PHOTOGRAPHY

SHORT VIDEO

WRITING

TOTAL PRIZE

US\$ 1,600

Submission End-Date

16 September 2024

Winner Announcement

4 October 2024

More information: www.coconutcommunity.org

TERMS & CONDITIONS

- Theme: **"Coconut for a Circular Economy: Building Partnerships for Maximum Value"**
- 1st - 3rd winner by decision of jury
- The decision of the jury is final and inviolable
- Participants must follow ICC social media
- Submission email to: wcd@coconutcommunity.org

**TOTAL PRIZE
USD500**

Photography Competition

- Photos must be original work of the participant
- Time range photos taken is year 2023 until now
- Minimum resolution: 600 DPI
- Maximum of 5 photos per participant
- Name format: Country - Name - Photo Title
- Photo editing allowed only: cropping, color contrast, rotating
- Submitted photos will be belonged to ICC for any publication purposes
- One of the winner criterias is voting/like in Instagram & Facebook (follow ICC Instagram and Facebook)

**TOTAL PRIZE
USD550**

Short Video/Footage Competition

- Competition open for worldwide
- One video allowed per participant (can be done individually or group of max 3 people)
- Videos must be original work of the participant
- Time range: videos taken is year 2023 until now
- Maximum total duration is 3 minutes
- Minimum Resolution: 1080 p
- Posted in participant's own social media: Facebook and Instagram post by tagging ICC social media and #worldcoconutday2024, #worldcoconutdayICC, #coconutcommunity
- ICC can have access of reposting and any publication purposes for the published post
- Name format: Country - Name - Video Title
- Submitted videos will be belonged to ICC for any publication purposes
- Video content suggestions: *Innovative ways to serve coconut-based foods & Coconut based crafts/home product making/tutorial of making products from coconut/handicrafts*

**TOTAL PRIZE
USD550**

Writing Competition

- Submitted material will be belonged to ICC for any publication purposes
- Inspiring stories/experiences/research based semi popular papers are also encouraged
- Must cite minimum one reference from CORD Journal (www.journal.coconutcommunity.org)
- ICC can have access of any publication purposes, articles submitted could be published in CORD and Cocoinfo, with standard honorarium

FULLY AUTOMATED SCADA based rigorous **CLEAN IN PLACE (C.I.P) SYSTEMS**

Head Office:

GOMA GROUP OF COMPANIES

Wagle Industrial Estate, Thane, Maharashtra 400604

CONTACT: +91 9322654236 / 5/2

E: export.pte@goma.co.in | W: www.goma.co.in

GLOBAL PRESENCE

Nepal | Sri Lanka | Bhutan | Bangladesh | Vietnam | Iran
Indonesia | Malaysia | Malaysia | Egypt | Saudi | UAE | Kenya
Tanzania | Tanzania | Ethiopia | Nigeria | Australia | Oman

DESICCATED COCONUT PROCESSING MACHINERY

"Over 100 machines in operation worldwide"

BAND DRYER (APRON/CONTINUOS TRAY DRYER)

for Desiccated Coconut Granules, Chips & Toasted D/C

Output Capacity : 1000 to 2500 Kgs/hr.

Two Stage and Three Stage Dryers.

Apron width : 2640mm and 3250mm

COMBINATION DRYER

for Desiccated Coconut Granules, Chips,

Toasted D/C & Parings.

Output Capacity : 300 to 1000 Kgs/hr.

VIBRATORY FLUID BED DRYER

for Desiccated Coconut Granules & Parings.

Output Capacity : 300 to 1000 Kgs/hr.

GRINDER

Output Capacity:
1000Kgs/hr.

BLANCHER

Output Capacity :
1000 to 4000 Kgs/hr.

NOVATEX SCREENER/GRADER

Output Capacity :
1000 to 1500 Kgs/hr.

DESHELLING MAHINE

Output Capacity :
250 to 300 nuts/hr.

DEHUSKING MACHINE

Output Capacity :
1200 nuts/hr.

OIL EXPELLER

RADIATOR

Extruded Fins or
Plate Fins Type

STAINLESS STEEL PERFORATED APRON TRAYS

Width: 2640mm & 3250mm

STAINLESS STEEL CHAIN

GEMTECH PROJECTS LLP.

10/C, Middleton Row, 3rd Floor, Kolkata - 700 071, India

Tel: +91-33-2217 7328 (4 Lines) | Mobile: +91 9831173874, +91 9831131196 | Fax: +91-33-2217 7333

E-mail: info@coconutprojects.com | sg@gemforgings.com | www.coconutprojects.com

INTERNATIONAL COCONUT COMMUNITY
PO Box 1343
JAKARTA - INDONESIA

PRINTED MATTER

BY AIR MAIL

The **COCOMMUNITY** is the monthly Newsletter of the INTERNATIONAL COCONUT COMMUNITY (ICC) incorporating current news, features, statistical data, business opportunities, and market information relating to the world coconut industry.

Established in 1969, under the auspices of the United Nations Economic and Social Commission for Asia and the Pacific (UN-ESCAP), the ICC is an independent regional intergovernmental organization which consists of twenty one member countries and accounts for 85-90% of the world production of coconut. The ICC member countries are: the Federated States of Micronesia, Fiji, Guyana, India, Indonesia, Ivory Coast, Jamaica, Kenya, Kiribati, Malaysia, Marshall Islands, Papua New Guinea, Phillipines, Samoa, Solomon Islands, Sri Lanka, Thailand, Timor Leste, Tonga, Vanuatu, and Vietnam.

The subscription rates for the *Cocommunity* excluding of postage are: US\$50.00 per year for ICC member countries, US\$60.00 for non-ICC member countries.

For subscription, please write to:

INTERNATIONAL COCONUT COMMUNITY

8th Floor, Bappebti Building, Jl. Kramat Raya 172

Central Jakarta 10430, Indonesia

or P.O. Box 1343, Jakarta 10013, Indonesia

Phone : (62-21) 3100556-57

Fax : (62-21) 3101007

E-mail : icc@coconutcommunity.org or apcc@indo.net.id

www.coconutcommunity.org